
Pressure strengthening and its application to the analysis of hydrogen sample-radius

behaviour in a tungsten gasket as a function of the initial sample-radius-to-tip-radius ratio

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2002 J. Phys.: Condens. Matter 14 10907

(http://iopscience.iop.org/0953-8984/14/44/399)

Download details:

IP Address: 171.66.16.97

The article was downloaded on 18/05/2010 at 17:12

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/14/44
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 14 (2002) 10907–10910 PII: S0953-8984(02)37872-X

Pressure strengthening and its application to the
analysis of hydrogen sample-radius behaviour in a
tungsten gasket as a function of the initial
sample-radius-to-tip-radius ratio

Arthur L Ruoff1, C O Rodriguez2 and Niels E Christensen3

1 Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853, USA
2 Instituto de Fisica de Liquidos y Sistema Bilogica, Grupo de Fisica del Solido, C. C. 565,
La Plata, Argentina
3 Institute of Physics and Astronomy, Aarhus University, DK-8000, Aarhus, Denmark

Received 10 June 2002
Published 25 October 2002
Online at stacks.iop.org/JPhysCM/14/10907

Abstract
By calculating the single-crystal elastic constants of W and Mo by first-
principles methods the pressure strengthening of the yield stress was obtained.
This was used to calculate the behaviour of the hydrogen sample hole size in
a tungsten gasket. It was found that drastic changes occur depending on r0

s /rt

where r0
s is the initial sample radius and rt is the diamond tip radius. It is

seen why, with r0
s /rt = 0.9, the Carnegie group cannot and have not exceeded

pressures of 230 GPa and why, with r0
s /rt = 0.5, the Cornell group has been

able to reach 342 GPa.

1. Pressure strengthening

Pressure strengthening makes possible the attainment of multimegabar pressures in the
diamond anvil cell [1–5]. Its existence was first noted in a paper given by the present author
in 1972 [6].

The first accurate measurement on the effect of pressure on yield strength was made by
Chua and Ruoff in 1973 [7]. This along with the theories of yield strength [7] enables one to
conclude that the yield strength of an equiaxed polycrystalline aggregate scales with pressure
as follows:

σ = G/(1 − ν)

G0/(1 − ν0)
σ00 = F(P)σ00 (1)

where σ00 is the yield strength at atmospheric pressure, G is the shear modulus under pressure,
ν is Poisson’s ratio under pressure, G0 and ν0 are the corresponding values at atmospheric
pressure and F(P) is the pressure strengthening factor.
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Figure 1. The pressure strengthening factor, F , versus pressure for W and Mo.

One way of obtaining an approximation for F(P) is to use the ultrasonically measured
single-crystal elastic coefficients at atmospheric pressure and at moderate pressures. They can
be connected to G and ν, using well known methods [8, 9], so that an expression linear in P
is obtained for F(P). In the case of diamond, F(P) ≈ 2 at P ≈ 5 Mbar [10].

Theoretical methods can also be used to obtain for cubic crystals such as Mo and W
the individual elastic constants B , (C11 − C12)/2 and C44 and hence the exact variation
with pressure of F(P). With this development of modern computational techniques, it is
certainly true that F(P) can be calculated with substantially greater accuracy in the megabar
regime [11] than it can be measured experimentally at this time [13]. Such measurements
are very difficult. The individual elastic constants were computed using the local density
approximation of density-functional theory with a full-potential implementation of the linear
muffin-tin orbital method to calculate the total energies of the crystal in various strain states. For
W, a scalar relativistic version to the LMTO scheme was used. This included relativistic shifts,
but spin–orbit splitting was omitted. The elastic constants obtained were then used to compute
G (and since B is known, ν) using the method of Hashin and Strikmann [8]. The results
are shown in figure 1. Note that the pressure strengthening factor is approximately 4.5 at six
megabars [11, 12]. It is this which makes possible the attainment of a pressure of 416 GPa [4],
greater than that at the Earth’s core (361 GPa) and 560 GPa [5] (approaching the TPa regime).

2. Analysis of sample-radius variation of hydrogen in a tungsten gasket

It is of interest to combine the effects of strain hardening and pressure strengthening to analyse
the situation for a sample of hydrogen in a gasket at high pressure. The sample is located
in a circular hole whose centre is at the tip centre. The problem is to calculate the sample
radius as a function of pressure for different initial ratios of sample radius (r0

s ) to tip radius
(rt ), i.e. r0

s /rt . The diamond was described using nonlinear finite elasticity. It is assumed that
it does not yield or fracture. Intrinsic to this is the assumption that hydrogen does not attack
the diamond.

It was assumed that sticking conditions hold at the diamond–gasket interface. It is assumed
that the yield strength of hydrogen is zero, i.e., that it behaves as a fluid with an equation of
state as determined by Loubeyre et al [14]. This gives a lower bound on the pressure for a given
sample radius at pressure. It is assumed that the yield strength of the gasket at a given radius
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Figure 2. Hydrogen sample radius versus pressure. The initial radius r0
s = 10 µm. The initial

bevel was 8◦; σ00 = 8 GPa. The ideal plasticity limit is 224 GPa.

does not vary with angle of rotation (the real world is not so kind), i.e., that the plastic behaviour
is homogeneous. A pressure versus sample-radius plot is shown in figure 2 for r0

s /rt = 1.0.
Note that at low pressure, rs decreases as P increases, but then begins to increase, and

then increases further until an instability is reached (at P ≈ 224 GPa) and the pressure then
decreases. This is called the ideal plastic instability limit. At the Carnegie Institute, Mao and
Hemley used r0

s /rt = 0.9 [16].
For r0

s /rt = 0.9, the ideal plastic instability limit is 242 GPa. Even with hydrogen having
some shear strength at that pressure and a high coefficient of friction, it is doubtful that a
pressure above 250 GPa could be reached.

This explains why their maximum pressures on hydrogen are limited to 230 GPa, [17]. It
also explains why they often see the loss of hydrogen although a near-circular gasket hole is
still present [16]. Were they to use r0

s /rt = 0.5 this problem would disappear (until very much
higher pressures were reached) as we see later.

Actually many other (nonideal) things could go wrong. Hydrogen could dissolve in the
diamond and migrate to the point where the stresses σπ and σrr along the centre axes both
become tensile, and lead to fracture of the diamond [10]. Hydrogen could unpin dislocations
leading to yielding of the diamond. The diamond tip could be slightly tilted leading to sideward
migration of the sample hole. The yield strength of these gaskets near to rs could vary with
θ , resulting in an instability occurring and very abnormal radial growth of the hole occurring
near a specific θ where the yield stress is a minimum. All of these problems can occur, which
is why so far the maximum pressure obtained on H2 is only 342 GPa [15]; this was obtained
with r0

s /rt = 0.5.
When r0

s /rt = 0.5, calculations shown that rs decreases at first and then increases, reaching
the ideal plasticity limit of 673 GPa. Suppose the situation is nonideal; suppose that along the
way before 673 GPa is reached hydrogen diffuses into the diamond either by bulk diffusion or
by dislocation pipe diffusion. The mass of hydrogen in the sample hole decreases. The result is
that the pressure drops and rs decreases. It must be emphasized that rs decreases. This has been
directly observed in a case in which it occurred on a reasonable timescale. The pressure was
220 GPa and the nut was tightened. Then the next x-ray measurements showed a surprising
decrease in pressure. On optical examination it appeared that rs had decreased slightly (it
had been increasing). Careful examination showed a tiny crack appearing 20 mm below the
surface on one of the diamonds. The nut was tightened (so as to increase the compression). The
pressure was lower, rs had subsequently decreased and the crack size grew. This behaviour was
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followed for several cycles. With an r0
s /rt ratio of 0.5 and P substantially less than the ideal

plasticity limit (673 GPa in this case), and with the hole remaining approximately circular, the
hole closes when the hydrogen sample is lost. Thus in our 342 GPa experiments (at about half
the ideal plastic instability limit), H2 was definitely present or the hole would have closed [15].

When H2 is at pressures of 342 GPa or higher it is elastically stiff and the shear stress will
be large [18], so optical experiments such as Raman studies will fail to show a signal because
of severe line broadening.

In order to reach pressures needed for metallization of hydrogen, perhaps 600 GPa, [19]
it is necessary to:

(1) have a small r0
s /rt ratio;

(2) isolate the diamond from the hydrogen;
(3) decrease rt from the current value, 10–5 µm and possibly even smaller [4];
(4) assure homogeneity of the yield stress of the gasket material perhaps by using gaskets

produced from one-nanometre tungsten powder.

Fulfilling all of these requirements may be arduous.
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